首页> 外文OA文献 >A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
【2h】

A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks

机译:基于混合psO-Kmeans算法的内容中心网络模糊异常检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase – the training phase – we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase – the detection phase – we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms.
机译:在以内容为中心的网络(CCN)中作为可能的未来Internet,将出现从拒绝服务(DoS)到隐私攻击的新型攻击和安全挑战。需要一种有效的安全机制来保护内容并防御未知和新形式的攻击和异常。通常,聚类算法将适合于构建良好的异常检测系统的要求。 K-means是一种流行的异常检测方法,可将数据分类为不同的类别。然而,它遭受局部收敛和对簇质心选择的敏感性。在本文中,我们提出了一种新颖的模糊异常检测系统,该系统可以分两个阶段工作。在第一个阶段(训练阶段),我们提出了粒子群优化(PSO)和K-means算法的混合,同时具有两个同时发生的成本函数,即分离好的聚类和局部优化,以确定最佳的聚类数量。当定义了群集质心和对象的最佳位置时,它将开始第二阶段。在此阶段(检测阶段),我们将两种基于距离的方法(作为分类和离群值)相结合,采用模糊方法来检测新监视数据中的异常。实验结果表明,与其他一些著名的聚类算法相比,该算法可以达到最佳的聚类数量,良好的聚类效果,同时提高了检测率,降低了误报率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号